Cверхраннее обнаружение пожара. Мифы, с которыми приходиться жить. Адресно-аналоговые системы – раннее обнаружение пожара Автоматические системы пожаротушения

В Российской Федерации ежедневно происходит около 700 пожаров, на которых погибает более 50 человек. Поэтому сохранение жизни людей остается одной из важнейших задач всех систем безопасности. В последнее время все больше обсуждается тема раннего обнаружения пожара.

Разработчики современной противопожарной техники соревнуются в повышении чувствительности пожарных извещателей к основным признакам пожара: теплу, оптическому излучению от пламени и концентрации дыма. В этом направлении проводится огромная работа, но все пожарные извещатели срабатывают, когда хотя бы небольшой пожар уже возник. И мало кто обсуждает тему обнаружения возможных признаков пожара. Однако приборы, которые могут регистрировать не пожар, а лишь угрозу или вероятность появления пожара, уже разработаны. Это – газовые пожарные извещатели.

Сравнительный анализ

Известно, что пожар может возникнуть как от внезапной аварийной ситуации (взрыв, короткое замыкание), так и при постепенном накоплении опасных факторов: скоплении горючих газов, паров, перегрева вещества выше точки воспламенения, тления изоляции проводов электрокабелей от перегрузки, гниения и разогрева зерна и т.п.

На рис. 1 представлен график типичной реакции газового пожарного извещателя на пожар, начинающийся с горящей сигареты, упавшей на матрас. Из графика видно, что газовый извещатель реагирует на монооксид углерода через 60 мин. после попадания горящей сигареты на матрас, в этом же случае фотоэлектрический дымовой извещатель реагирует через 190 мин., ионизационный дымовой – через 210 мин., что значительно увеличивает время для принятия решения об эвакуации людей и ликвидации очага пожара.

Если фиксировать комплекс параметров, который может привести к началу пожара, то можно (не дожидаясь появления пламени, дыма) изменить обстановку и избежать пожара (аварии). При раннем получении сигнала от газового пожарного извещателя обслуживающий персонал успеет предпринять меры к ослаблению или устранению фактора угрозы. Например, это может быть проветривание помещения от горючих паров и газов, при перегреве изоляции – выключение питания кабеля и переход на использование резервной линии, при коротком замыкании на электронной плате вычислительных и управляемых машин – тушение локального пожара и удаление неисправного блока. Таким образом, именно человек принимает окончательное решение: вызывать пожарную охрану или устранять аварию своими силами.

Виды газовых извещателей

Все газовые пожарные извещатели различаются по типу сенсора:
- металлооксидные,
- термохимические,
- полупроводниковые.

Металлооксидные сенсоры

Изготавливаются металлооксидные сенсоры на основе толстопленочной микроэлектронной технологии. В качестве подложки используется поликристаллическая окись алюминия, на которую с двух сторон наносятся нагреватель и металлооксидный газочувствительный слой (рис. 2). Чувствительный элемент помещен в корпус, защищенный проницаемой для газа оболочкой, удовлетворяющей всем требованиям взрывопожаробезопасности.



Металлооксидные сенсоры предназначены для определения концентраций горючих газов (метан, пропан, бутан, водород и т.д.) в воздухе в интервале концентраций от тысячных до единиц процентов и токсичных газов (СО, арсин, фосфин, сероводород и т.д.) на уровне предельно допустимых концентраций, а также для одновременного и селективного определения концентраций кислорода и водорода в инертных газах, например в ракетной технике. Кроме того, они имеют рекордно низкую для своего класса электрическую мощность, необходимую для нагрева (менее 150 мВт), и могут применяться в сигнализаторах утечки газов и системах противопожарной сигнализации как стационарных, так и носимых.

Термохимические газосигнализаторы

Среди методов, применяемых для определения концентрации в атмосферном воздухе горючих газов или паров горючих жидкостей, используется термохимический метод. Его сущность заключается в измерении теплового эффекта (дополнительного повышения температуры) от реакции окисления горючих газов и паров на каталитически активном элементе датчика и дальнейшем преобразовании полученного сигнала. Датчик сигнализатора, используя этот тепловой эффект, формирует электрический сигнал, пропорциональный концентрации горючих газов и паров с различными коэффициентами пропорциональности для различных веществ.

При горении различных газов и паров термохимический датчик выдает сигналы, разные по величине. Одинаковым уровням (в % НКПР) различных газов и паров в воздушных смесях соответствуют неравные выходные сигналы датчика.

Термохимический датчик не избирателен. Его сигнал характеризует уровень взрывоопасности, определяемый суммарным содержанием горючих газов и паров в воздушной смеси.

В случае контроля совокупности компонентов, в которой содержание отдельных, заранее известных горючих компонентов колеблется от нуля до какой-то концентрации может привести к погрешности контроля. Такая погрешность существует и при нормальных условиях. Этот фактор необходимо учитывать для задания границ диапазона сигнальных концентраций и допуском на их изменение – пределом допускаемой основной абсолютной погрешности срабатывания. Пределы измерения сигнализатора – это наименьшее и наибольшее значение концентрации определяемого компонента, в рамках которых сигнализатор осуществляет измерение с погрешностью, не превышающей заданную.

Описание измерительной схемы

Измерительная схема термохимического преобразователя представляет собой мостовую схему (см. рис. 2). Чувствительный В1 и компенсирующий В2 элементы, расположенные в датчике, включены в мостовую схему. Вторая ветвь моста – резисторы R3–R5 находятся в блоке сигнализации соответствующего канала. Мост балансируется резистором R5.

При каталитическом горении воздушной смеси горючих газов и паров на чувствительном элементе В1 происходит выделение тепла, увеличение температуры и, следовательно, увеличение сопротивления чувствительного элемента. На компенсирующем элементе В2 горения не происходит. Сопротивление компенсирующего элемента изменяется при его старении, изменении тока питания, температуры, скорости движения контролируемой смеси и т.п. Эти же факторы действуют и на чувствительный элемент, что значительно уменьшает вызванный ими разбаланс моста (дрейф нуля) и погрешность контроля.

При стабильном питании моста, стабильной температуре и скорости контролируемой смеси разбаланс моста со значительной степенью точности является результатом изменения сопротивления чувствительного элемента.

В каждом канале устройство питания моста датчика обеспечивает регулированием тока постоянную оптимальную температуру элементов. В качестве датчика температуры, как правило, используется сам же чувствительный элемент В1. Сигнал разбаланса моста снимается с диагонали моста ab.

Полупроводниковые газовые сенсоры

Принцип действия полупроводниковых газовых сенсоров основан на изменении электропроводности полупроводникового газочувствительного слоя при химической адсорбции газов на его поверхности. Этот принцип позволяет эффективно использовать их в приборах пожарной сигнализации как альтернативные устройства традиционным оптическим, тепловым и дымовым сигнализаторам (извещателям), в том числе содержащим радиоактивный плутоний. А высокую чувствительность (для водорода от 0,00001% объемного), селективность, быстродействие и дешевизну полупроводниковых газовых сенсоров следует рассматривать как основное их преимущество перед другими типами пожарных извещателей. Используемые в них физико-химические принципы детектирования сигналов сочетаются с современными микроэлектронными технологиями, что обуславливает низкую стоимость изделий при массовом производстве и высокие технические характеристики.

Полупроводниковые газочувствительные сенсоры – это высокотехнологичные элементы с низким энергопотреблением (от 20 до 200 мВт), высокой чувствительностью и увеличенным быстродействием до долей секунд. Металлооксидные и термохимические сенсоры являются слишком дорогостоящими для такого использования. Внедрение в производство газовых пожарных извещателей на основе полупроводниковых химических сенсоров, изготавливаемых по групповой технологии, позволяет намного снизить стоимость газовых извещателей, что немаловажно для массового применения.

Нормативные требования

Нормативные документы на газовые пожарные извещатели еще не разработаны в полной мере. Имеющиеся ведомственные требования РД БТ 39-0147171-003-88 распространяются на объекты нефтяной и газовой промышленности. В НПБ 88-01 по размещению газовых пожарных извещателей сказано, что их следует устанавливать в помещениях на потолке, стенах и других строительных конструкциях зданий и сооружений в соответствии с инструкцией по эксплуатации и рекомендациями специализированных организаций.

Однако в любом случае, для того чтобы точно рассчитать количество газовых извещателей и правильно произвести их установку на объекте, предварительно необходимо знать:
- параметр, по которому контролируется безопасность (тип газа, который выделяется и свидетельствует об опасности, например CO, CH4, H2 и т.д.);
- объем помещения;
- назначение помещения;
- наличие систем вентиляции, подпора воздуха и т.д.

Резюме

Газовые пожарные извещатели – это приборы следующего поколения, и поэтому они еще требуют от отечественных и зарубежных компаний, занимающихся противопожарными системами, новых научно-исследовательских изысканий по разработке теории газовыделения и распространения газов в помещениях разных по назначению и эксплуатации, а также проведению практических экспериментов для разработки рекомендаций по рациональному размещению таких извещателей.

Нашей организацией на территории Воронежской области выполнен монтаж оборудования и программных средств системы раннего обнаружения лесных пожаров. На территориях Воронежской, Тамбовской и Липецкой областях осуществляется техническое сопровождение функционирования данных программно-аппаратных комплексов в интересах территориальных органов МЧС России и органов управления Лесного хозяйства.

Описание комплекса

Информационная система «Лесной Дозор» — это программно-аппаратный комплекс для мониторинга леса и раннего обнаружения лесных пожаров.

Архитектура системы мониторинга леса и раннего обнаружения лесных пожаров «Лесной Дозор»

Система «Лесной Дозор » состоит из двух частей: аппаратной и программной. Аппаратная часть — это сеть управляемых датчиков наблюдения (видеокамер, тепловизионных датчиков, инфракрасных камер). Программная часть — это специальное программное обеспечение (ПО), с помощью которого заказчик осуществляет мониторинг лесов в режиме реального времени и определяет координаты возгораний. Последнее предполагает, что система может обнаруживать огонь на предпожарной стадии — стадии возгорания, что на практике позволяет предупреждать чрезвычайные ситуации.

Для функционирования системы используется уже существующая инфраструктура мобильных операторов (сотовые вышки, аппаратура связи и обслуживающие команды). Т.к. система легко масштабируется и расширяется, она пригодна для обнаружения лесных пожаров как на небольших территориях, так и на больших площадях.

Характеристики системы

  • Возможная ошибка определения координат очага возгорания – до 250 метров.
  • Радиус обзора одной точки мониторинга – до 30 километров.
  • Точность определения направления на очаг возгорания – 0.5°
  • Время для обзора одной точки – до 10 минут. Зависит от производительности сервера заказчика.
  • Интеграция и учет метеорологических данных.
  • Интеграция и учет спутниковых данных.
  • Интеграция данных из сторонних информационных систем.
  • Возможность оперативного масштабирования и расширения системы для увеличения площади мониторинга.
  • Неограниченное число пользователей с доступом к системе.
  • Возможность оперативного получения информации на мобильные устройства.
  • Автоматическое обнаружение потенциально опасных объектов: дыма и пламени.

Сиcтема работает на основе современных технологий:

  • компьютерного зрения;
  • IP видеонаблюдения;
  • беспроводной широкополосной связи;
  • геоинформационных систем (ГИС);
  • клиент-серверных Интернет-приложений.

Система распределенного видеомониторинга «Лесной Дозор» состоит из следующих элементов:

  • Распределенная система видеокамер
  • Каналы связи, соединяющие видеокамеры с сетью Интернет
  • Сервер системы «Лесной Дозор » подключенный в сеть Интернет
  • Программное обеспечение сервера системы «Лесной Дозор »
  • Оборудование автоматизированного рабочего места оператора
  • Программное обеспечение «Лесной Дозор » автоматизированного рабочего места

Роботизированный сервер

Роботизированный сервер — это сервер системы «Лесной Дозор «, который осуществляет ряд ключевых функций, а именно:

  • управляет сетью видеокамер (датчиков) и осуществляет при их помощи видеонаблюдение территории, в том числе на основе заданных маршрутов патрулирования;
  • управляет подсистемой компьютерного зрения для поиска дыма и огня;
  • предоставляет рекомендации пользователю, информируя его о наличии потенциально опасных очагов возгорания.

Умная точка мониторинга

При установке системы иногда возникают ситуации, когда скорость Интернет-соединения чрезвычайно мала (меньше 512 Кбит/сек.) и передача видео данных в центр контроля затруднена. Чтобы решить эту проблему, наши специалисты используют концепцию «умной точки мониторинга».

Смысл концепции заключается в том, что основная часть данных с видеокамер обрабатывается ещё до того, как оказывается в Сети и передаётся в центр контроля. Осуществляется это благодаря специальным мини-серверам, «прикреплённым» к каждой конкретной точке мониторинга. Именно на мини-серверах осуществляется предварительный анализ медиа-информации и отсеивается «информационный шум».

Как следствие, даже через слабый Интернет оператор получает всё тот же архив потенциально опасных объектов (ПОО), что и при стандартной схеме передачи медиа данных.

Это позволяет заказчику избегать затрат на дорогостоящие каналы связи или в случаях, когда в этой местности доступ к качественному Интернет-соединению крайне затруднён.

Функционал системы «Лесной Дозор»

Возможности системы обеспечивают проведение видеомониторинга леса вблизи населённых пунктов в режиме реального времени.

Функционал системы «Лесной Дозор » позволяет осуществлять следующие действия:

  • Получать доступ к системе из любого центра контроля, при наличии подключения в сеть Интернет на требуемой скорости с достаточным количеством трафика.
  • Возможность выбора любой доступной камеры для получения с нее видеоизображения.
  • Менять ориентацию камеры, как по азимуту, так и по высоте, менять приближение камеры.
  • Устанавливать параметры получаемого с камеры видеоизображения, такие как разрешение и качество изображения (величина сжатия).
  • Изменять параметры используемого камерой инфракрасного фильтра для достижения приемлемых условий видимости в различных условиях.
  • Возможность получения информации о текущей ориентации камеры относительно севера (азимут) в виде числа и указания направления.
  • Получать информацию о текущем приближении камеры в виде числа и сектора обзора.
  • Возможность представления информации о местоположении видеокамер и их текущей ориентации.
  • Возможность управления камерой с помощью программных алгоритмов.
  • Возможность сохранения и доступа к сохраненным ориентациям камеры (привязкам) на заранее заданные объекты, например пожароопасные объекты, естественные ориентиры и т.д.
  • Формировать маршруты патрулирования, предназначенные для автоматического сканирования заданной территории.
  • Запускать маршруты патрулирования по отдельности для выбираемых камер, а также последовательно несколько маршрутов на различных камерах путем формирования списка маршрутов для просмотра.
  • Запускать одновременно до четырех маршрутов патрулирования в одном окне, предназначенном для обзорного мониторинга сразу нескольких камер (требуется высокая пропускная способность каналов связи).
  • Возможность зациклить просмотр одного маршрута или группы маршрутов.
  • Возможность автоматического отключения приложения при долгосрочном отсутствии активности пользователя.
  • Сохранять текущее изображение с камеры в виде картинки и в виде видеофайла для дальнейшего просмотра и анализа.
  • Возможность автоматического обновления с минимальным участием пользователя для добавления новой функциональности и устранения программных ошибок в любом месте размещения.
  • Возможность работы нескольких пользователей с одной камерой в режиме разделения по времени с помощью механизма блокировок управления и просмотра.
  • Возможность маркировки различных объектов, предназначенных для выполнения процедур по мониторингу леса (населенные пункты, ориентиры и т.д.).
  • Возможность отображения на видеоизображении, поступающем с камеры, объектов, попадающих в область обзора с обозначением типа объекта.
  • Определять направление на видимый пожар при видимости с одной камеры с точностью 0,5 градуса и осуществлять маркировку данного объекта.
  • Определять точные географические координаты видимого не менее чем с 2-х камер пожара с точностью 250м и отображать его в информационной базе.
  • Возможность определения квартала по географическим координатам.
  • Возможность представления информации о текущей пожарной обстановке на мобильном телефоне.
  • Определять координаты пожара на основе информации поступающей от системы наземного мониторинга – с пожарно-наблюдательных вышек. Осуществлять маркировку пожара.
  • Возможность корректировки ориентации камеры при её физическом смещении, для сохранения всех привязок ориентации камеры.
  • Возможность представления в едином информационном блоке информации с различных информационных источников (метеорологические данные, данные с системы спутникового мониторинга и др.).
  • Возможность автоматического обнаружения очагов возгорания системой и сигнализации оператору при просмотре маршрутов патрулирования (требуется высокая производительность процессора).
  • Возможность автоматического обнаружения очагов возгорания системой и сигнализации оператору при выполнении мониторинга в ручном режиме (требуется высокая производительность процессора).
  • Автоматическое обнаружение очагов возгорания и сохранение фотоинформации и информации о направлении на потенциально опасный объект в архиве.
  • Предоставление доступа к архиву потенциально опасных объектов, обнаруженных автоматической системой, с возможностью уточнения.
  • Возможность обмениваться оперативными сообщениями о сложившейся ситуации с другими операторами и группами операторов в рамках выполнения задач по обнаружению и ликвидации пожаров.
  • Получать уведомления, указания, рекомендации от администраторов системы по вопросам функционирования компонентов продукта.

Комплекс программного обеспечения

Программная часть написана на платформе.NET с использованием MS SQL Express и представляет собой микро-сервисную архитектуру. Программно-аппаратная часть имеет систему распределенных серверов плюс сервер для хранения головных баз данных. Система имеет блок раннего обнаружения пожаров, написанный на C++ и встроенный в так называемый камера контроллер. Система представляет дружественный интерфейс и обладает широким функционалом, а именно

  • Круглосуточное патрулирование камерой территории лесного массива по проложенным маршрутам;
  • Автоматическое определение пожароопасного объекта;
  • Определение расстояния до пожароопасного объекта, прокладка до него маршрута;
  • Возможность присваивания различных категорий пожароопасному объекту;
  • Хранение роликов в соответствии с пожароопасным объектом;
  • Хранение архива всех объектов присутствующих в программе;
  • Визуализация сил и средств тушения пожаров;
  • Поддержка квартальных карт;
  • Много сервисных функций
  • Комплекс “Лесной дозор” в настоящее время поставляется как декстопная так и веб-версия.

Каналы передачи тревожного сигнала

  • Интернет
  • Мобильные сети
  • Встроенная система оповещения

Информирование всех необходимых служб

  • Департаменты Лесного дозора
  • Администрации городов и поселков
  • Районные администрации
  • Экологические службы

ООО «ДСК» © 2017 г., Нижний Новгород

Как известно, день простоя дата-центра обходится в десятки, а то и в сотни миллионов долларов. Для непрерывной работы дата-центр должен быть защищен от многих опасностей, в том числе и от пожаров. В крупных американских и европейских ЦОДах для этого активно используют аспирационные системы раннего обнаружения возгораний.

Специфика пожарообнаружения в ЦОДах

Дата-центр - это высокотехнологичное сооружение, потребляющее больше электроэнергии, чем обычный офис. Важное требование к дата-центрам - поддержание определенной температуры воздуха в помещении. Этой цели служит специальная система кондиционирования, с помощью которой создаются внутренние воздушные потоки между стойками и внутри них, обеспечивающие отвод избыточного тепла и комфортную температуру для работы оборудования.

Такая сложная система кондиционирования требует специального подхода к пожарообнаружению. Дело в том, что при наличии сильных воздушных потоков обычные пожарные извещатели для обнаружения дыма или теплового излучения малоэффективны. Дым, подгоняемый воздушными потоками, может не попасть в дымовую камеру извещателя. И если он все же попадает в камеру, то к этому моменту в помещении достигнута предельная концентрация дыма, так что когда срабатывает извещатель, распространение огня уже неизбежно. Поэтому в современных дата-центрах используют активные аспирационные системы пожарной сигнализации.

В настоящее время аспирационные системы пожарной сигнализации выпускают только за рубежом; основные их производители - компании Bosch, Safe Fire Detection, Securiton, System Sensor и Xtralis (ей принадлежат марки оборудования Vesda и Icam, последняя недавно была куплена ею).

Системы данного класса, например, Vesda и Icam от Xtralis, Titanus компании Bosch Security или аспирационные извещатели System Sensor одноименной компании, уже используются во многих странах мира на объектах такого типа, в том числе и в России.

Историческая справка

В 1967 г. американские исследователи Алквист и Чарлсон (Ahlquist & Charlson) впервые создают прибор нефелометр для измерения прозрачности воздуха и степени его загрязнения, позволяющий контролировать содержание углекислого газа на городских улицах. Это устройство было усовершенствовано и выпущено на рынок в США. В 1970 г. австралийское содружество CSIRO использовало нефелометр в исследованиях лесных пожаров. Немногим позже в CSIRO обратился главный департамент почты APO с заказом на изучение проблемы предотвращения пожаров в почтовых службах. Целью исследования было найти наиболее подходящую технологию для защиты от пожаров телефонных станций, компьютерных комнат и кабельных туннелей. Источниками риска на этих объектах были кабели, которые разогревались от электрического тока или от горячих пластин. В этом исследовании CSIRO использовало нефелометры, с помощью которых контролировали степень задымления в вентиляционных каналах. Впоследствии данное исследование дало толчок к разработке высокочувствительного прибора, способного обнаруживать задымление на ранней стадии пожара. Выход усовершенствованной версии этого прибора на рынок стал огромным скачком в развитии систем раннего обнаружения задымления.

Следует отметить, что в требованиях некоторых международных страховых компаний уже прописывается использование систем раннего обнаружения пожара, в том числе и как средства снижения страховых выплат. А в регламентах крупнейших международных ИТ-компаний система раннего обнаружения пожара является частью системы пожарной безопасности.

Принцип работы

Аспирационные системы - это системы раннего обнаружения пожара. Как правило, они имеют модульную архитектуру, которая позволяет адаптировать систему к конкретным условиям эксплуатации и планировке здания. Основные компоненты такой системы - трубопровод для забора воздуха из контролируемой области и сам извещатель, который можно разместить в любом месте внутри защищаемого помещения или вне его.

В качестве трубопровода обычно используют трубы ПВХ. С помощью переходников, уголков, тройников и других аксессуаров можно создавать гибкие сети трубопроводов для забора воздуха с учетом особенностей каждого отдельно взятого помещения. При этом сам аспирационный извещатель создает вакуум в системе трубопровода, чтобы обеспечить непрерывный забор воздуха из контролируемой области через специально сделанные отверстия. Эти активно получаемые образцы воздуха проходят через камеру детекции, в которой проверяются на содержание в них частиц дыма. Кроме того, например, в системе VESDA, из пробы воздуха сначала удаляются пыль и загрязнения с помощью встроенного фильтра, а потом проба подается в камеру аспирационного извещателя. Это предотвращает загрязнение оптических поверхностей камеры.

Проба воздуха поступает в калиброванную камеру извещателя, в которой через нее проходит луч лазера. При наличии в воздухе частиц дыма наблюдается рассеивание света внутри камеры, и это немедленно обнаруживается высокочувствительной приемной системой (рис. 1). Затем сигнал обрабатывается и отображается на гистограммном дисплее, пороговых индикаторах срабатывания сигнализации и/или графическом дисплее. Чувствительность извещателя можно регулировать, а поток воздуха непрерывно контролируется на предмет обнаружения повреждений трубопровода.

Аспирационные извещатели условно делят на две категории. Первая - извещатели типа PIB (Point in the box), в которых в качестве камеры детекции используют обычные дымовые датчики повышенной чувствительности, например, ASD-Pro или LASD компании System Sensor с чувствительностью от 0,03 до 3,33%/м. Вторая группа - аспирационные извещатели типа VESDA, Icam или Titanus, которые имеют собственные встроенные камеры детекции дыма с диапазоном чувствительности от 0,005 до 20%/м у VESDA, от 0,001 до 20%/м у Icam и от 0,05 до 10%/м у Titanus. Мы рассмотрим только извещатели второй группы, поскольку именно они имеют наибольший диапазон чувствительности по сравнению с PIB, что позволяет детектировать пожар еще на стадии плавления провода и устанавливать наиболее высокий порог для запуска системы газового пожаротушения помещений дата-центров.

Особенности и преимущества

Классические системы пожарной сигнализации не срабатывают, пока не начнется тление или не появится огонь. На этом этапе возгорания борьба с пожаром уже становится сложным делом. Важнейшее преимущество аспирационных систем заключается в том, что они обнаруживают зарождающийся огонь и обеспечивают раннее оповещение о пожаре. Интеллектуальный процессор камеры детекции дыма анализирует полученные данные и принимает решение о том, соответствуют ли они каким-либо типичным моделям пожара. При этом внешние факторы, которые могут стать причиной ложных срабатываний, подавляются.

Итак, в чем же основные преимущества аспирационных систем?

1. Надежное обнаружение возгорания для ран-него предупреждения. Высокочувствительные датчики определяют возгорание на самой ранней его стадии - в фазе пиролиза, еще до распространения видимых частиц дыма (например, когда начинает оплавляться провод или другой электронный элемент оборудования). В большинстве случаев такие системы предотвращают значительный материальный ущерб, поскольку быстро выявляют вышедший из строя элемент, который можно обесточить, не дав зарождающемуся пожару перейти в активную фазу. Кроме того, аспирационные системы позволяют не вводить в действие систему активного (как правило, газового) пожаротушения и экономят средства, необходимые для перезарядки газовых баллонов.

2. Сокращение числа ложных срабатываний. Благодаря интеллектуальной обработке сигнала с датчиков в аспирационных системах подавляются внешние факторы, например, пыль, сквозняки или электрические помехи, которые часто становятся причиной ложных тревог. Это обеспечивает более высокую чувствительность и надежность работы системы даже в помещениях с высокими потолками или экстремальными температурами, а также в условиях загрязненности или высокой влажности.

3. Быстрый монтаж и простое обслуживание. Извещатели можно установить в любом месте как снаружи, так и внутри помещения, чтобы специалистам по обслуживанию было удобнее получить к ним доступ. Аспирационные системы незаметны в помещении, а их обслуживание не требует высокой квалификации. Информация о всех неисправностях, таких как повреждение трубопровода, загрязнение фильтра и т.д., выводится на экран дисплея. Таким образом, персоналу не приходится тратить много времени на выявление неисправности системы, ее можно обслуживать по мере поступления информации.

Основное и принципиальное отличие аспирационных систем от обычных систем с пассивными датчиками дыма - активный забор проб воздуха из коммуникационных и серверных шкафов дата-центра, посредством встроенного вентилятора, работающего по принципу пылесоса. Другим важным отличием является более высокая чувствительность извещателей, что позволяет обнаруживать частицы дыма, невидимые для человеческого глаза, с концентрацией от 0,005%/м у системы VESDA, от 0,001% у Icam или от 0,05% у Titanus.

Немаловажная особенность - наличие встроенного (как у системы VESDA) и/или внешнего фильтра, где очищается всасываемый воздух. Такие фильтры позволяют эксплуатировать аспирационные системы в сильно загрязненных помещениях без постоянной очистки или замены лазерных камер, что, в свою очередь, увеличивает срок службы системы и сокращает расходы на ее обслуживание.

Области применения

В некоторых случаях применение аспирационных систем приносит ощутимый результат по сравнению с обычными пассивными извещателями. В первую очередь это предприятия и компании, где непрерывность производственных или бизнес-процессов имеет первостепенное значение, а простои недопустимы. Таковы, например, телекоммуникационные системы и серверные финансовых организаций, коммунальные объекты и медицинские стерильные помещения (операционные), энергетические и транспортные системы. Аспирационные системы полезны и тогда, когда необходимо исключить ложное срабатывание системы активного пожаротушения, приводящее к большим затратам времени и средств на восстановление объекта.

Аспирационные системы предпочтительны в помещениях, где обнаружение дыма затруднено, например, при интенсивных воздушных потоках или в высоких атриумных пространствах (торговые центры, спортивные залы, театры, музеи и т.д.). Их используют и в помещениях, где доступ для технического обслуживания невозможен или затруднен; они оптимальны для защиты пространства за подвесным потолком и под фальшполом, лифтовых шахт, производственных зон, воздуховодов, а также тюрем и других мест содержания под стражей. Еще одна сфера применения - в экстремальных условиях окружающей среды: при сильной запыленности, загазованности, влажности, очень высоких или очень низких температурах (например, на электростанциях, бумажных или мебельных фабриках, в автомастерских, шахтах). И наконец, аспирационные системы используют, если важно сохранить дизайн помещения и средства обнаружения задымления требуется скрыть.

Построение аспирационной системы в ЦОДе

Как правило, оборудование дата-центров находится в закрытых шкафах, поэтому наиболее эффективным решением для защиты этих зон является отбор проб из шкафов. В случае аспирационных систем в дата-центрах трубки с всасывающими отверстиями проводят поверх стоек с установленным оборудованием. Гибкая система трубок позволяет отбирать пробы как над шкафами, так и внутри них с помощью капилляров, обеспечивая максимально надежное обнаружение дыма в полностью закрытых шкафах, равно как и в шкафах с верхней вентиляцией (рис. 2).

Сколько стоит зашита от пожара

Стоимость решения для пожарной защиты конкретного дата-центра зависит от объема и площади помещения, а также от числа отдельно защищаемых компонентов систем. В любом случае эта стоимость не превышает 1% от стоимости оборудования, установленного в дата-центре. Например, цена 15-канального извещателя Icam, способного защитить 15 стоек с оборудованием, составляет 10—11 тыс. евро, прибор VESDA VLP, который может защитить до 2000 кв.м., стоит 4—5 тыс. евро, а Titanus защищает до 400 кв.м. и стоит 2000—4000 евро.
Активное всасывание воздуха и последующий его анализ на содержание частиц дыма в аспирационной камере дает возможность построить систему таким образом, чтобы потоки воздуха в помещении не влияли на обнаружение задымления. Например, с помощью датчика Icam можно защитить до 15 стоек, проложив в каждую из них отдельную трубку-капилляр, а также обеспечить адресность, определяя место возгорания с точностью до отдельного шкафа. Принцип работы датчика Icam - поочередный забор воздуха из каждой трубки и дальнейший его анализ на содержание частиц дыма в камере детекции.

У системы Titanus есть функция ROOM-IDENT, которая обеспечивает раннее обнаружение возгораний и определение их местонахождения. Один извещатель может контролировать до пяти помещений или пяти стоек при прокладке только одной трубки. Процесс определения источника возгорания системой ROOM-IDENT включает четыре этапа, а результат отображается на извещателе.

Этап 1 (обычный режим): трубопровод используется для забора и оценки образцов воздуха в нескольких помещениях.

Этап 2 (раннее обнаружение возгорания): всасывание и анализ воздуха. При наличии дыма немедленно включается тревожный сигнал для раннего реагирования.

Этап 3 (обратная циркуляция): при включении тревожного сигнала всасывающий вентилятор выключается и включается второй, нагнетательный вентилятор, выдувающий все частицы дыма из трубопровода в противоположном направлении.

Этап 4 (определение местонахождения): после продувки трубопровода направление движения воздуха снова меняется. На основании замеров времени, которое потребовалось частицам дыма, чтобы достичь модуля детекции, система определяет местонахождение возгорания.

Используя гибкую систему трубопроводов, с помощью одного датчика VESDA можно, например, контролировать пространство не только над стойками, но и за фальшпотолком и фальшполом, а также кабельные лотки, которые есть в любом дата-центре и часто являются источником пожара. Кроме того, извещатели системы VESDA встраиваются в rack-стойку, что экономит место и обеспечивает конструктивную однотипность всего оборудования в дата-центре.

Еще один ключевой момент организации надежной системы пожарообнаружения - забор воздуха непосредственно у решетки приточно-вытяжной вентиляции помещения. Появившийся дым неизбежно попадает в воздушный поток, поэтому установка системы труб с заборными отверстиями на решетке возврата воздуха системы циркуляции обеспечивает моментальное обнаружение зарождающегося пожара на самой ранней стадии.

Забор проб воздуха непосредственно рядом с решеткой вытяжной вентиляции позволяет уловить в воздухе частицы дыма даже в том случае, если создаваемые воздушные потоки миновали все остальные заборные отверстия трубок в помещении. Это связано с тем, что через вытяжную вентиляцию циркулирует весь воздух, содержащийся в помещении, а значит, ни одна частица дыма, содержащаяся в воздухе, не пройдет мимо заборного отверстия (рис. 3).

Возможность установки различных уровней пожарной опасности позволяет запрограммировать систему на соответствующие реакции на разных этапах развития пожара, например, на отключение оборудования систем кондиционирования или запуск систем активного пожаротушения. Например, можно установить несколько порогов предтревоги или самую высокую чувствительность - для определения момента плавления элементов оборудования. При превышении данного порога чувствительности сигнал предтревоги будет передан на пожарный пост, чтобы персонал идентифицировал место плавления и отключил питание оборудования, предотвратив распространение пожара.

Можно также установить среднюю чувствительность, и при этом система будет определять момент сильного задымления помещения, когда сложно найти место или оборудование, являющееся причиной задымления. При превышении данного порога чувствительности можно запрограммировать систему на отключение кондиционеров. Самую низкую чувствительность устанавливают для уровня задымленности помещения, когда предотвратить дальнейшее распространение пожара невозможно без систем активного пожаротушения. При достижении данного порога чувствительности программируется включение системы газового пожаротушения (рис. 4).

Включение систем пожаротушения - это второй этап предотвращения распространения пожара в дата-центре, когда развитие пожара уже невозможно остановить с помощью простых действий: отключив задымившийся сервер, системы кондиционирования и т.д. Для активного тушения пожара применяются, как правило, газовые системы пожаротушения, использующие два принципа организации пожаротушения в дата-центре. Первый - это общее газовое пожаротушение, когда проводится тушение общей площади ЦОДа. Второй - стоечное газовое пожаротушение, когда тушат отдельно взятую стойку. Последний принцип применяется для стоек с оборудованием особого назначения, когда потеря данных обойдется дороже установки и эксплуатации системы пожаротушения. Но это уже тема отдельной статьи.

  


Своевременное обнаружение возгорания в дата-центре может предотвратить потерю оборудования и важнейших данных, а также вынужденные простои, сопряженные с финансовыми и материальными затратами для компании. Вложение средств в надежную систему пожарной сигнализации дата-центров гарантирует организации защиту от будущих расходов на восстановление электронного оборудования и потерянной в пожаре информации. Иногда эти финансовые потери несравненно больше, чем затраты на систему обнаружения возгорания на ранней стадии.

Данная система предназначена для обнаружения начальной стадии пожара, передачи извещения о месте и времени его возникновения и при необходимости включения автоматических систем пожаротушения и дымоудаления.

Эффективной системой оповещения пожарной опасности является применение систем сигнализации.

Система пожарной сигнализации должна:

* - быстро выявить место возникновения пожара;

* - надёжно передавать сигнал о пожаре на приёмно-контрольное устройство;

* - преобразовывать сигнал о пожаре в форму, удобную для восприятия персоналом охраняемого объекта;

* - оставаться невосприимчивой к влиянию внешних факторов, отличающихся от факторов пожара;

* - быстро выявлять и передавать извещение о неисправностях, препятствующих нормальному функционированию системы.

Средствами противопожарной автоматики оборудуют производственные здания категорий А, Б и В, а также объекты государственной важности.

Система пожарной сигнализации состоит из пожарных извещателей и преобразователей, преобразующих факторы появления пожара (тепло, свет, дым) в электрический сигнал; прёмно- контрольной станции, передающей сигнал и включающей световую и звуковую сигнализацию; а также автоматические установки пожаротушения и дымоудаления.

Обнаружение пожаров на ранней стадии облегчает их тушение, что во многом зависит от чувствительности датчиков.

Автоматические системы пожаротушения

Автоматические системы пожаротушения предназначены для тушения или локализации пожара. Одновременно они должны выполнять и функции автоматической пожарной сигнализации.

Установки автоматического пожаротушения должны отвечать следующим требованиям:

* - время срабатывания должно быть меньше предельно допустимого времени свободного развития пожара;

* - иметь продолжительность действия в режиме тушения, необходимую для ликвидации пожара;

* - иметь необходимую интенсивность подачи (концентрацию) огнетушащих веществ;

* - надёжность функционирования.

В помещениях категорий А, Б, В применяются стационарные установки пожаротушения, которые подразделяются на аэрозольные (галоидоуглеводородные), жидкостные, водяные (спринклерные и дренчерные), паровые, порошковые.

Наибольшее распространение в настоящее время приобрели спринклерные установки для тушения пожаров распылённой водой. Для этого под потолком монтируется сеть разветвлённых трубопроводов, на которых размещают сприклеры из расчёта орошения одним спринклером от 9 до 12м 2 площади пола. В одной секции водяной системы должно быть не менее 800 спринклеров. Площадь пола, защищаемая одним спринклером типа СН-2, должна быть не более 9м 2 в помещениях с повышенной пожарной опасностью (при количестве горючих материалов более 200кг на 1м 2 ; в остальных случаях - не более 12м 2 . Выходное отверстие в спринклерной головке закрыто легкоплавким замком (72°С, 93°С, 141°С, 182°С), при расплавлении которого вода разбрызгивается, ударяясь о дефлектор. Интенсивность орошения площади составляет 0,1л/с м 2

Спринклерные сети должны находиться под давлением, способным подать 10л/с. Если при пожаре вскрылся хотя бы один спринклер, то подаётся сигнал. Контрольно-сигнальные клапаны располагаются на заметных и доступных местах, причём к одному контрольно-сигнальному клапану подключают не более 800 спринклеров.

В пожароопасных помещениях рекомендуется подавать воду сразу по всей площади помещения. В этих случаях применяют установки группового действия (дренчерные). Дренчерные - это спринклеры без плавких замков с открытыми отверстиями для воды и других составов. В обычное время выход воды в сеть закрыт клапаном группового действия. Интенсивность подачи воды 0,1л/с м 2 и для помещений повышенной пожарной опасности (при количестве сгораемых материалов 200кг на 1м 2 и более) - 0,3л/с м 2 .

Расстояние между дренчерами не должно превышать 3м, а между дренчерами и стенами или перегородками - 1,5м. Площадь пола, защищаемая одним дренчером, должна быть не более 9м 2 . В течение первого часа тушения пожара должно подаваться не менее 30л/с

Установки позволяют осуществлять автоматическое измерение контролируемых параметров, распознавание сигналов при наличии взрывопожароопасной ситуации, преобразование и усиление этих сигналов, и выдачу команд на включение исполнительных приспособлений защиты.

Сущностью процесса прекращения взрыва является торможение химических реакций путём подачи в зону горения огнетушащих составов. Возможность прекращения взрыва обусловлена наличием некоторого промежутка времени от момента возникновения условий взрыва до его развития. Этот промежуток времени, условно названный периодом индукции (ф инд), зависит от физико-химических свойств горючей смеси, а также от объёма и конфигурации защищаемого аппарата.

Для большинства горючих углеводородных смесей ф инд составляет порядка 20% от общего времени взрыва.

Для того чтобы автоматическая система противовзрывной защиты отвечала своему назначению, должно выполняться следующее условие: Т АСПВ < ф инд, то есть, время срабатывания защиты должно опережать время индуктивного периода.

Условия безопасного применения электрооборудования регламентируется ПУЭ. Электрооборудование подразделяют на взрывозащищённое, пригодное для пожароопасных зон, и нормального выполнения. Во взрывоопасных зонах позволяется применять только взрывозащищённое электрооборудование, дифференцированное по уровням и видам взрывозащиты, категориям (характеризующиеся безопасным зазором, то есть максимальным диаметром отверстия, через которое пламя данной горючей смеси не способно пройти), группам (которые характеризуются Т с данной горючей смеси).

Во взрывоопасных помещениях и зонах внешних установок применяют специальное электроосветительное оборудование, выполненное в противовзрывном варианте.

Дымовые люки

Дымовые люки предназначены для обеспечения незадымляемости смежных помещений и уменьшения концентрации дыма в нижней зоне помещения, в котором возник пожар. Открыванием дымовых люков создаются более благоприятные условия для эвакуации людей из горящего здания, облегчается работа пожарных подразделений по тушению пожара.

Для удаления дыма в случае пожара в подвальном помещении нормы предусматривают устройство окон размером не менее 0,9 х 1,2м на каждые 1000м 2 площади подвального помещения. Дымовой люк обычно перекрывается клапаном.

Понравилось? Лайкни нас на Facebook