Как сделать теплотехнический расчет стены. Теплотехнический расчет наружной кирпичной стены. Программное обеспечение при проектировании отопительной системы

Теплотехнический расчет позволяет определить минимальную толщину ограждающих конструкций для того, чтобы не было случаев перегрева или промерзания в процессе эксплуатации строения.

Ограждающие конструктивные элементы отапливаемых общественных и жилых зданий, за исключением требований устойчивости и прочности, долговечности и огнестойкости, экономичности и архитектурного оформления, должны отвечать в первую очередь теплотехническим нормам. Выбирают ограждающие элементы в зависимости от конструктивного решения, климатологических характеристик района застройки, физических свойств, влажно-температурного режима в здании, а также в соответствии с требованиями сопротивления теплопередаче, воздухонипроницанию и паропроницанию.

В чем смысл расчета?

  1. Если во время расчета стоимости будущего строения учитывать лишь прочностные характеристики, то, естественно, стоимость будет меньше. Однако это видимая экономия: впоследствии на обогрев помещения уйдет значительно больше средств.
  2. Грамотно подобранные материалы создадут в помещении оптимальный микроклимат.
  3. При планировке системы отопления также необходим теплотехнический расчет. Чтобы система была рентабельной и эффективной, необходимо иметь понятие о реальных возможностях здания.

Теплотехнические требования

Важно, чтобы наружные конструкции соответствовали следующим теплотехническим требованиям:

  • Имели достаточные теплозащитные свойства. Другими словами, нельзя допускать в летнее время перегрева помещений, а зимой - излишних потерь тепла.
  • Разность температур воздуха внутренних элементов ограждений и помещений не должна быть выше нормативного значения. В противном случае может произойти чрезмерное охлаждение тела человека излучением тепла на данные поверхности и конденсация влаги внутреннего воздушного потока на ограждающих конструкциях.
  • В случае изменения теплового потока температурные колебания внутри помещения должны быть минимальные. Данное свойство называется теплоустойчивостью.
  • Важно, чтобы воздухонепроницаемость ограждений не вызывала сильного охлаждения помещений и не ухудшала теплозащитные свойства конструкций.
  • Ограждения должны иметь нормальный влажностный режим. Так как переувлажнение ограждений увеличивает потери тепла, вызывает в помещении сырость, уменьшает долговечность конструкций.

Чтобы конструкции соответствовали вышеперечисленным требованиям, выполняют теплотехнический расчет, а также рассчитывают теплоустойчивость, паропроницаемость, воздухопроницаемость и влагопередачу по требованиям нормативной документации.

Теплотехнические качества

От теплотехнических характеристик наружных конструктивных элементов строений зависит:

  • Влажностный режим элементов конструкции.
  • Температура внутренних конструкций, которая обеспечивает отсутствие на них конденсата.
  • Постоянная влажность и температура в помещениях, как в холодное, так и в теплое время года.
  • Количество тепла, которое теряется зданием в зимний период времени.

Итак, исходя из всего перечисленного выше, теплотехнический расчет конструкций считается немаловажным этапом в процессе проектирования зданий и сооружений, как гражданских, так и промышленных. Проектирование начинается с выбора конструкций - их толщины и последовательности слоев.

Задачи теплотехнического расчета

Итак, теплотехнический расчет ограждающих конструктивных элементов осуществляется с целью:

  1. Соответствия конструкций современным требованиям по тепловой защите зданий и сооружений.
  2. Обеспечения во внутренних помещениях комфортного микроклимата.
  3. Обеспечения оптимальной тепловой защиты ограждений.

Основные параметры для расчета

Чтобы определить расход тепла на отопление, а также произвести теплотехнический расчет здания, необходимо учесть множество параметров, зависящих от следующих характеристик:

  • Назначение и тип здания.
  • Географическое расположение строения.
  • Ориентация стен по сторонам света.
  • Размеры конструкций (объем, площадь, этажность).
  • Тип и размеры окон и дверей.
  • Характеристики отопительной системы.
  • Количество людей, находящихся в здании одновременно.
  • Материал стен, пола и перекрытия последнего этажа.
  • Наличие системы горячего водоснабжения.
  • Тип вентиляционных систем.
  • Другие конструктивные особенности строения.

Теплотехнический расчет: программа

На сегодняшний день разработано множество программ, позволяющих произвести данный расчет. Как правило, расчет осуществляется на основании методики, изложенной в нормативно-технической документации.

Данные программы позволяют вычислить следующее:

  • Термическое сопротивление.
  • Потери тепла через конструкции (потолок, пол, дверные и оконные проемы, а также стены).
  • Количество тепла, требуемого для нагрева инфильтрирующего воздуха.
  • Подбор секционных (биметаллических, чугунных, алюминиевых) радиаторов.
  • Подбор панельных стальных радиаторов.

Теплотехнический расчет: пример расчета для наружных стен

Для расчета необходимо определить следующие основные параметры:

  • t в = 20°C - это температура воздушного потока внутри здания, которая принимается для расчета ограждений по минимальным значениям наиболее оптимальной температуры соответствующего здания и сооружения. Принимается она в соответствии с ГОСТом 30494-96.

  • По требованиям ГОСТа 30494-96 влажность в помещении должна составлять 60%, в результате в помещении будет обеспечен нормальный влажностный режим.
  • В соответствии с приложением B СНиПа 23-02-2003, зона влажности сухая, значит, условия эксплуатации ограждений - A.
  • t н = -34 °C - это температура наружного воздушного потока в зимний период времени, которая принимается по СНиП исходя из максимально холодной пятидневки, имеющей обеспеченность 0,92.
  • Z от.пер = 220 суток - это длительность отопительного периода, которая принимается по СНиПу, при этом среднесуточная температура окружающей среды ≤ 8 °C.
  • T от.пер. = -5,9 °C - это температура окружающей среды (средняя) в отопительный период, которая принимается по СНиП, при суточной температуре окружающей среды ≤ 8 °C.

Исходные данные

В таком случае теплотехнический расчет стены будет производиться с целью определения оптимальной толщины панелей и теплоизоляционного материала для них. В качестве наружных стен будут использоваться сэндвич-панели (ТУ 5284-001-48263176-2003).

Комфортные условия

Рассмотрим, как выполняется теплотехнический расчет наружной стены. Для начала следует вычислить требуемое сопротивление теплопередачи, ориентируясь на комфортные и санитарно-гигиенические условия:

R 0 тр = (n × (t в - t н)) : (Δt н × α в), где

n = 1 - это коэффициент, который зависит от положения наружных конструктивных элементов по отношению к наружному воздуху. Его следует принимать по данным СНиПа 23-02-2003 из таблицы 6.

Δt н = 4,5 °C - это нормируемый перепад температуры внутренней поверхности конструкции и внутреннего воздуха. Принимается по данным СНиПа из таблицы 5.

α в = 8,7 Вт/м 2 °C - это теплопередача внутренних ограждающих конструкций. Данные берутся из таблицы 5, по СНиПу.

Подставляем данные в формулу и получаем:

R 0 тр = (1 × (20 - (-34)) : (4,5 × 8,7) = 1,379 м 2 °C/Вт.

Условия энергосбережения

Выполняя теплотехнический расчет стены, исходя из условий энергосбережения, необходимо вычислить требуемое сопротивление теплопередачи конструкций. Оно определяется по ГСОП (градусо-сутки отопительного периода, °C) по следующей формуле:

ГСОП = (t в - t от.пер.) × Z от.пер, где

t в - это температура воздушного потока внутри здания, °C.

Z от.пер. и t от.пер. - это продолжительность (сут.) и температура (°C) периода, имеющего среднесуточную температуру воздуха ≤ 8 °C.

Таким образом:

ГСОП = (20 - (-5,9)) ×220 = 5698.

Исходя из условий энергосбережения, определяем R 0 тр методом интерполяции по СНиПу из таблицы 4:

R 0 тр = 2,4 + (3,0 - 2,4)×(5698 - 4000)) / (6000 - 4000)) = 2,909 (м 2 °C/Вт)

R 0 = 1/ α в + R 1 + 1/ α н, где

d - это толщина теплоизоляции, м.

l = 0,042 Вт/м°C - это теплопроводность минераловатной плиты.

α н = 23 Вт/м 2 °C - это теплоотдача наружных конструктивных элементов, принимаемый по СНиПу.

R 0 = 1/8,7 + d/0,042+1/23 = 0,158 + d/0,042.

Толщина утеплителя

Толщина теплоизоляционного материала определяется исходя из того, что R 0 = R 0 тр, при этом R 0 тр берется при условиях энергосбережения, таким образом:

2,909 = 0,158 + d/0,042, откуда d = 0,116 м.

Подбираем марку сэндвич-панелей по каталогу с оптимальной толщиной теплоизоляционного материала: ДП 120, при этом общая толщина панели должна составлять 120 мм. Аналогичным образом производится теплотехнический расчет здания в целом.

Необходимость выполнения расчета

Запроектированные на основании теплотехнического расчета, выполненного грамотно, ограждающие конструкции позволяют сократить затраты на отопление, стоимость которого регулярно увеличиваются. К тому же сбережение тепла считается немаловажной экологической задачей, ведь это напрямую связано с уменьшением потребления топлива, что приводит к снижению воздействия негативных факторов на окружающую среду.

Кроме того, стоит помнить о том, что неправильно выполненная теплоизоляция способна привести к переувлажнению конструкций, что в результате приведет к образованию плесени на поверхности стен. Образование плесени, в свою очередь, приведет к порче внутренней отделки (отслаивание обоев и краски, разрушение штукатурного слоя). В особо запущенных случаях может понадобиться радикальное вмешательство.

Очень часто строительные компании в своей деятельности стремятся использовать современные технологии и материалы. Только специалисту под силу разобраться в необходимости применения того или иного материала, как отдельно, так и в совокупности с другими. Именно теплотехнический расчет поможет определиться с наиболее оптимальными решениями, которые обеспечат долговечность конструктивных элементов и минимальные финансовые затраты.

Создание комфортных условий для проживания или трудовой деятельности является первостепенной задачей строительства. Значительная часть территории нашей страны находится в северных широтах с холодным климатом. Поэтому поддержание комфортной температуры в зданиях всегда актуально. С ростом тарифов на энергоносители снижение расхода энергии на отопление выходит на первый план.

Климатические характеристики

Выбор конструкции стен и кровли зависит прежде всего от климатических условий района строительства. Для их определения необходимо обратиться к СП131.13330.2012 «Строительная климатология». В расчетах используются следующие величины:

  • температура наиболее холодной пятидневки обеспеченностью 0,92, обозначается Тн;
  • средняя температура, обозначается Тот;
  • продолжительность, обозначается ZOT.

На примере для Мурманска величины имеют следующие значения:

  • Тн=-30 град;
  • Тот=-3.4 град;
  • ZOT=275 суток.

Кроме того, необходимо задать расчетную температуру внутри помещения Тв, она определяется в соответствии с ГОСТом 30494-2011. Для жилья можно принять Тв=20 град.

Чтобы выполнить теплотехнический расчет ограждающих конструкций, предварительно вычисляют величину ГСОП (градусо-сутки отопительного периода):
ГСОП = (Тв - Тот) х ZOT.
На нашем примере ГСОП=(20 - (-3,4)) х 275 = 6435.

Основные показатели

Для правильного выбора материалов ограждающих конструкций необходимо определить, какими теплотехническими характеристиками они должны обладать. Способность вещества проводить тепло характеризуется его теплопроводностью, обозначается греческой буквой l (лямбда) и измеряется в Вт/(м х град.). Способность конструкции удерживать тепло характеризуется её сопротивлением теплопередаче R и равняется отношению толщины к теплопроводности: R = d/l.

В случае если конструкция состоит из нескольких слоёв, сопротивление рассчитывается для каждого слоя и затем суммируется.

Сопротивление теплопередачи является основным показателем наружной конструкции. Его величина должна превышать нормативное значение. Выполняя теплотехнический расчет ограждающих конструкций здания, мы должны определить экономически оправданный состав стен и кровли.

Значения теплопроводности

Качество теплоизоляции определяется в первую очередь теплопроводностью. Каждый сертифицированный материал проходит лабораторные исследования, в результате которых определяется это значение для условий эксплуатации «А» или «Б». Для нашей страны большинству регионов соответствуют условия эксплуатации «Б». Выполняя теплотехнический расчет ограждающих конструкций дома, следует использовать именно это значение. Значения теплопроводности указывают на этикетке либо в паспорте материала, но если их нет, можно воспользоваться справочными значениями из Свода правил. Значения для наиболее популярных материалов приведены ниже:

  • Кладка из обыкновенного кирпича - 0,81 Вт(м х град.).
  • Кладка из силикатного кирпича - 0,87 Вт(м х град.).
  • Газо- и пенобетон (плотностью 800) - 0,37 Вт(м х град.).
  • Древесина хвойных пород - 0,18 Вт(м х град.).
  • Экструдированный пенополистирол - 0,032 Вт(м х град.).
  • Плиты минераловатные (плотность 180) - 0,048 Вт(м х град.).

Нормативное значение сопротивления теплопередаче

Расчётное значение сопротивления теплопередаче не должно быть меньше базового значения. Базовое значение определяется по таблице 3 СП50.13330.2012 « зданий». В таблице определены коэффициенты для расчета базовых значений сопротивления теплопередаче всех ограждающих конструкций и типов зданий. Продолжая начатый теплотехнический расчет ограждающих конструкций, пример расчета можно представить следующим образом:

  • Рстен = 0,00035х6435 + 1,4 = 3,65 (м х град/Вт).
  • Рпокр = 0,0005х6435 + 2,2 = 5,41 (м х град/Вт).
  • Рчерд = 0,00045х6435 + 1,9 = 4,79 (м х град/Вт).
  • Рокна = 0,00005х6435 + 0,3 = х град/Вт).

Теплотехнический расчет наружной ограждающей конструкции выполняется для всех конструкций, замыкающих «теплый» контур - пол по грунту или перекрытие техподполья, наружные стены (включая окна и двери), совмещенное покрытие или перекрытие неотапливаемого чердака. Также расчет необходимо выполнять и для внутренних конструкций, если перепад температур в смежных комнатах составляет более 8 градусов.

Теплотехнический расчет стен

Большинство стен и перекрытий по своей конструкции многослойны и неоднородны. Теплотехнический расчет ограждающих конструкций многослойной структуры выглядит следующим образом:
R= d1/l1 +d2/l2 +dn/ln,
где n - параметры n-го слоя.

Если рассматривать кирпичную оштукатуренную стену, то получим следующую конструкцию:

  • наружный слой штукатурки толщиной 3 см, теплопроводность 0,93 Вт(м х град.);
  • кладка из полнотелого глиняного кирпича 64 см, теплопроводность 0,81 Вт(м х град.);
  • внутренний слой штукатурки толщиной 3 см, теплопроводность 0,93 Вт(м х град.).

Формула теплотехнического расчета ограждающих конструкций выглядит следующим образом:

R=0,03/0,93 + 0,64/0,81 + 0,03/0,93 = 0,85(м х град/Вт).

Полученное значение существенно меньше определенного ранее базового значения сопротивления теплопередаче стен жилого дома в Мурманске 3,65 (м х град/Вт). Стена не удовлетворяет нормативным требованиям и нуждается в утеплении. Для утепления стены используем толщиной 150 мм и теплопроводностью 0,048 Вт(м х град.).

Подобрав систему утепления, необходимо выполнить проверочный теплотехнический расчет ограждающих конструкций. Пример расчета приведён ниже:

R=0,15/0,048 + 0,03/0,93 + 0,64/0,81 + 0,03/0,93 = 3,97(м х град/Вт).

Полученная расчётная величина больше базовой - 3,65 (м х град/Вт), утеплённая стена удовлетворяет требованиям норм.

Расчёт перекрытий и совмещённых покрытий выполняется аналогично.

Теплотехнический расчёт полов, соприкасающихся с грунтом

Нередко в частных домах или общественных зданиях выполняются по грунту. Сопротивление теплопередаче таких полов не нормируется, но как минимум конструкция полов не должна допускать выпадения росы. Расчет конструкций, соприкасающихся с грунтом, выполняется следующим образом: полы разбиваются на полосы (зоны) шириной по 2 метра, начиная с внешней границы. Таких зон выделяется до трех, оставшаяся площадь относится к четвертой зоне. Если в конструкции пола не предусмотрен эффективный утеплитель, то сопротивление теплопередаче зон принимается следующим:

  • 1 зона - 2,1 (м х град/Вт);
  • 2 зона - 4,3 (м х град/Вт);
  • 3 зона - 8,6 (м х град/Вт);
  • 4 зона - 14,3 (м х град/Вт).

Нетрудно заметить, что чем дальше участок пола находится от внешней стены, тем выше его сопротивление теплопередаче. Поэтому зачастую ограничиваются утеплением периметра пола. При этом к сопротивлению теплопередаче зоны добавляется сопротивление теплопередаче утепленной конструкции.
Расчет сопротивления теплопередаче пола необходимо включать в общий теплотехнический расчет ограждающих конструкций. Пример расчета полов по грунту рассмотрим ниже. Примем площадь пола 10 х 10, равную 100 м кв.

  • Площадь 1 зоны составит 64 м кв.
  • Площадь 2 зоны составит 32 м кв.
  • Площадь 3 зоны составит 4 м кв.

Среднее значение сопротивления теплопередаче пола по грунту:
Рпола = 100 / (64/2,1 + 32/4,3 + 4/8,6) = 2,6 (м х град/Вт).

Выполнив утепление периметра пола пенополистирольной плитой толщиной 5 см, полосой шириной 1 метр, получим среднее значение сопротивления теплопередаче:

Рпола = 100 / (32/2,1 + 32/(2,1+0,05/0,032) + 32/4,3 + 4/8,6) = 4,09 (м х град/Вт).

Важно отметить, что подобным образом рассчитываются не только полы, но и конструкции стен, соприкасающихся с грунтом (стены заглубленного этажа, теплого подвала).

Теплотехнический расчет дверей

Несколько иначе рассчитывается базовое значение сопротивления теплопередаче входных дверей. Для его расчета понадобится сначала вычислить сопротивление теплопередаче стены по санитарно-гигиеническому критерию(невыпадению росы):
Рст = (Тв - Тн)/(ДТн х ав).

Здесь ДТн - разница температур между внутренней поверхностью стены и температурой воздуха в комнате, определяется по Своду правил и для жилья составляет 4,0.
ав - коэффициент теплоотдачи внутренней поверхности стены, по СП составляет 8,7.
Базовое значение дверей берется равным 0,6хРст.

Для выбранной конструкции двери требуется выполнить проверочный теплотехнический расчет ограждающих конструкций. Пример расчета входной двери:

Рдв = 0,6 х (20-(-30))/(4 х 8,7) = 0,86 (м х град/Вт).

Этому расчетному значению будет соответствовать дверь, утепленная минераловатной плитой толщиной 5 см. Её сопротивление теплопередаче составит R=0,05 / 0,048=1,04 (м х град/Вт), что больше расчетного.

Комплексные требования

Расчеты стен, перекрытий или покрытия выполняются для проверки поэлементных требований нормативов. Сводом правил также установлено комплектное требование, характеризующее качество утепления всех ограждающих конструкций в целом. Эта величина называется «удельная теплозащитная характеристика». Без ее проверки не обходится ни один теплотехнический расчет ограждающих конструкций. Пример расчета по СП приведен ниже.

Коб = 88,77 / 250 = 0,35, что меньше нормируемого значения 0,52. В данном случае площади и объем приняты для дома размерами 10 х 10 х 2,5 м. Сопротивления теплопередачи - равные базовым величинам.

Нормируемое значение определяется в соответствии с СП в зависимости от отапливаемого объёма дома.

Помимо комплексного требования, для составления энергетического паспорта также выполняют теплотехнический расчет ограждающих конструкций, пример оформления паспорта дан в приложении к СП50.13330.2012.

Коэффициент однородности

Все приведенные выше расчеты применимы для однородных конструкций. Что на практике встречается довольно редко. Чтобы учесть неоднородности, снижающие сопротивление теплопередаче, вводится поправочный коэффициент теплотехнической однородности - r. Он учитывает изменение сопротивления теплопередаче, вносимые оконными и дверными проемами, внешними углами, неоднородными включениями (например перемычками, балками, армирующими поясами), и пр.

Расчет этого коэффициента достаточно сложен, поэтому в упрощенном виде можно воспользоваться примерными значениями из справочной литературы. Например, для кирпичной кладки - 0,9, трехслойных панелей - 0,7.

Эффективное утепление

Выбирая систему утепления дома, легко убедиться, что выполнить современные требования тепловой защиты без использования эффективного утеплителя практически невозможно. Так, если использовать традиционный глиняный кирпич, потребуется кладка толщиной в несколько метров, что экономически нецелесообразно. Вместе с тем низкая теплопроводность современных утеплителей на основе пенополистирола либо каменной ваты позволяет ограничиться толщинами в 10-20 см.

Например, чтобы достичь базового значения сопротивления теплопередаче 3,65 (м х град/Вт), потребуется:

  • кирпичная стена толщиной 3 м;
  • кладка из пенобетонных блоков 1,4 м;
  • минераловатный утеплитель 0,18 м.

При эксплуатации здания нежелателен как перегрев, так и промерзание. Определить золотую середину позволит теплотехнический расчет, который не менее важен, чем вычисление экономичности, прочности, стойкости к огню, долговечности.

Исходя из теплотехнических норм, климатических характеристик, паро – и влагопроницаемости осуществляется выбор материалов для сооружения ограждающих конструкций. Как выполнить этот расчет, рассмотрим в статье.

От теплотехнических особенностей капитальных ограждений здания зависит многое. Это и влажность конструктивных элементов, и температурные показатели, которые влияют на наличие или отсутствие конденсата на межкомнатных перегородках и перекрытиях.

Расчет покажет, будут ли поддерживаться стабильные температурные и влажностные характеристики при плюсовой и минусовой температуре. В перечень этих характеристик входит и такой показатель, как количество тепла, теряющегося ограждающими конструкциями строения в холодный период.

Нельзя начинать проектирование, не имея всех этих данных. Опираясь на них, выбирают толщину стен и перекрытий, последовательность слоев.

По регламенту ГОСТ 30494-96 температурные значения внутри помещений. В среднем она равна 21⁰. При этом относительная влажность обязана пребывать в комфортных рамках, а это в среднем 37%. Наибольшая скорость перемещения массы воздуха - 0,15 м/с

Теплотехнический расчет ставит перед собой цели определить:

  1. Идентичны ли конструкции заявленным запросам с точки зрения тепловой защиты?
  2. Настолько полно обеспечивается комфортный микроклимат внутри здания?
  3. Обеспечивается ли оптимальная тепловая защита конструкций?

Основной принцип - соблюдение баланса разности температурных показателей атмосферы внутренних конструкций ограждений и помещений. Если его не соблюдать, тепло будут поглощать эти поверхности, а внутри температура останется очень низкой.

На внутреннюю температуру не должны существенно влиять изменения теплового потока. Эту характеристику называют теплоустойчивостью.

Путем выполнения теплового расчета определяют оптимальные пределы (минимальный и максимальный) габаритов стен, перекрытий по толщине. Это является гарантией эксплуатации здания на протяжении длительного периода как без экстремальных промерзаний конструкций, так и перегревов.

Параметры для выполнения расчетов

Чтобы выполнить теплорасчет, нужны исходные параметры.

Зависят они от ряда характеристик:

  1. Назначения постройки и ее типа.
  2. Ориентировки вертикальных ограждающих конструкций относительно направленности к сторонам света.
  3. Географических параметров будущего дома.
  4. Объема здания, его этажности, площади.
  5. Типов и размерных данных дверных, оконных проемов.
  6. Вида отопления и его технических параметров.
  7. Количества постоянных жильцов.
  8. Материала вертикальных и горизонтальных оградительных конструкций.
  9. Перекрытия верхнего этажа.
  10. Оснащения горячим водоснабжением.
  11. Вида вентиляции.

Учитываются при расчете и другие конструктивные особенности строения. Воздухопроницаемость ограждающих конструкций не должна способствовать чрезмерному охлаждению внутри дома и снижать теплозащитные характеристики элементов.

Потери тепла вызывает и переувлажнение стен, а кроме того, это влечет за собой сырость, отрицательно влияющую на долговечность здания.

В процессе расчета, прежде всего, определяют теплотехнические данные стройматериалов, из которых изготавливаются ограждающие элементы строения. Помимо этого, определению подлежит приведенное сопротивление теплопередачи и сообразность его нормативному значению.

Формулы для производства расчета

Утечки тепла, теряемого домом, можно разделить на две основные части: потери через ограждающие конструкции и потери, вызванные функционированием . Кроме того, тепло теряется при сбросе теплой воды в канализационную систему.

Для материалов, из которых устроены ограждающие конструкции, нужно найти величину показателя теплопроводности Кт (Вт/м х градус). Они есть в соответствующих справочниках.

Теперь, зная толщину слоев, по формуле: R = S/Кт , высчитывают термическое сопротивление каждой единицы. Если конструкция многослойная, все полученные значения складывают.

Размеры тепловых потерь проще всего определить путем сложения тепловых течений через ограждающие конструкции, которые собственно и образуют это здание

Руководствуясь такой методикой, к учету принимают тот момент, что материалы, составляющие конструкции, имеют неодинаковую структуру. Также учитывается, что поток тепла, проходящий сквозь них, имеет разную специфику.

Для каждой отдельной конструкции теплопотери определяют по формуле:

Q = (A / R) х dT

  • А - площадь в м².
  • R - сопротивление конструкции теплопередаче.
  • dT - разность температур снаружи и изнутри. Определять ее нужно для самого холодного 5- дневного периода.

Выполняя расчет таким образом, можно получить результат только для самого холодного пятидневного периода. Общие теплопотери за весь холодный сезон определяют путем учета параметра dT, учитывая температуру не самую низкую, а среднюю.

В какой степени усваивается тепло, а также теплоотдача зависит от влажности климата в регионе. По этой причине при вычислениях применяют карты влажности

Для этого есть формула:

W = ((Q + Qв) х 24 х N)/1000

В ней N - длительность отопительного периода в днях.

Недостатки расчета по площади

Расчет, основанный на площадном показателе, не отличается большой точностью. Здесь не принят во внимание такой параметр, как климат, температурные показатели как минимальные, так и максимальные, влажность. Из-за игнорирования многих важных моментов расчет имеет значительные погрешности.

Часто стараясь перекрыть их, в проекте предусматривают «запас».

Если все же для расчета выбран этот способ, нужно учитывать следующие нюансы:

  1. При высоте вертикальных ограждений до трех метров и наличии не более двух проемов на одной поверхности, результат лучше умножить на 100 Вт.
  2. Если в проект заложен балкон, два окна либо лоджия, умножают в среднем на 125 Вт.
  3. Когда помещения промышленные или складские, применяют множитель 150 Вт.
  4. В случае расположения радиаторов вблизи окон, их проектную мощность увеличивают на 25%.

Формула по площади имеет вид:

Q=S х 100 (150) Вт.

Здесь Q - комфортный уровень тепла в здании, S - площадь с отоплением в м². Числа 100 или 150 - удельная величина тепловой энергии, расходуемой для нагрева 1 м².

Потери через вентиляцию дома

Ключевым параметром в этом случае является кратность воздухообмена. При условии, что стены дома паропроницаемые, эта величина равна единице.

Проникновение холодного воздуха в дом осуществляется по приточной вентиляции. Вытяжная вентиляция способствует уходу теплого воздуха. Снижает потери через вентиляцию рекуператор-теплообменник. Он не допускает ухода тепла вместе с выходящим воздухом, а входящие потоки он нагревает

Предусматривается полное обновление воздуха внутри здания за один час. Здания, построенные по стандарту DIN, имеют стены с пароизоляцией, поэтому здесь кратность воздухообмена принимают равной двум.

Есть формула, по которой определяют теплопотери через систему вентиляции:

Qв = (V х Кв: 3600) х Р х С х dT

Здесь символы обозначают следующее:

  1. Qв - теплопотери.
  2. V - объем комнаты в мᶾ.
  3. Р - плотность воздуха. еличина ее принимается равной 1,2047 кг/мᶾ.
  4. Кв - кратность воздухообмена.
  5. С - удельная теплоемкость. Она равна 1005 Дж/кг х С.

По итогам этого расчета можно определить мощность теплогенератора отопительной системы. В случае слишком высокого значения мощности выходом из ситуации может стать . Рассмотрим несколько примеров для домов из разных материалов.

Пример теплотехнического расчета №1

Рассчитаем жилой дом, находящийся в 1 климатическом районе (Россия), подрайон 1В. Все данные взяты из таблицы 1 СНиП 23-01-99. Наиболее холодная температура, наблюдающаяся на протяжении пяти дней обеспеченностью 0,92 - tн = -22⁰С.

В соответствии со СНиП отопительный период (zоп) продолжается 148 суток. Усредненная температура на протяжении отопительного периода при среднесуточных температурных показателях воздуха на улице 8⁰ - tот = -2,3⁰. Температура снаружи в отопительный сезон - tht = -4,4⁰.

Теплопотери дома - важнейший момент на этапе его проектирования. От итогов расчета зависит и выбор стройматериалов, и утеплителя. Нулевых потерь не бывает, но стремиться нужно к тому, чтобы они были максимально целесообразными

Оговорено условие, что в комнатах дома должна быть обеспечена температура 22⁰. Дом имеет два этажа и стены толщиной 0,5 м. Высота его - 7 м, габариты в плане - 10 х 10 м. Материал вертикальных ограждающих конструкций - теплая керамика. Для нее коэффициент теплопроводности - 0,16 Вт/м х С.

В качестве наружного утеплителя, толщиной 5 см, использована минеральная вата. Значение Кт для нее - 0,04 Вт/м х С. Количество оконных проемов в доме - 15 шт. по 2,5 м² каждое.

Теплопотери через стены

Прежде всего, нужно определить термическое сопротивление как керамической стены, так и утеплителя. В первом случае R1 = 0,5: 0,16 = 3,125 кв. м х С/Вт. Во втором - R2 = 0,05: 0,04 = 1,25 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м х С/Вт.

Так как теплопотери имеют прямо пропорциональную взаимосвязь с площадью ограждающих конструкций, рассчитываем площадь стен:

А = 10 х 4 х 7 – 15 х 2,5 = 242,5 м²

Теперь можно определить потери тепла через стены:

Qс = (242,5: 4.375) х (22 – (-22)) = 2438,9 Вт.

Теплопотери через горизонтальные ограждающие конструкции рассчитывают аналогично. В итоге все результаты суммируют.

Если подвал под полом первого этажа отапливается, пол можно не утеплять. Стены подвала все же лучше обшить утеплителем, чтобы тепло не уходило в грунт.

Определение потерь через вентиляцию

Чтобы упростить расчет, не учитывают толщину стен, а просто определяют объем воздуха внутри:

V = 10х10х7 = 700 мᶾ.

При кратности воздухообмена Кв = 2, потери тепла составят:

Qв = (700 х 2) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 20 776 Вт.

Если Кв = 1:

Qв = (700 х 1) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 10 358 Вт.

Эффективную вентиляцию жилых домов обеспечивают роторные и пластинчатые рекуператоры. КПД у первых выше, он достигает 90%.

Пример теплотехнического расчета №2

Требуется произвести расчет потерь сквозь стену из кирпича толщиной 51 см. Она утеплена 10-сантиметровым слоем минеральной ваты. Снаружи – 18⁰, внутри - 22⁰. Габариты стены - 2,7 м по высоте и 4 м по длине. Единственная наружная стена помещения ориентирована на юг, внешних дверей нет.

Для кирпича коэффициент теплопроводности Кт = 0,58 Вт/мºС, для минеральной ваты - 0,04 Вт/мºС. Термическое сопротивление:

R1 = 0,51: 0,58 = 0,879 кв. м х С/Вт. R2 = 0,1: 0,04 = 2,5 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = 0.879 + 2,5 = 3.379 кв. м х С/Вт.

Площадь внешней стены А = 2,7 х 4 = 10,8 м²

Потери тепла через стену:

Qс = (10,8: 3.379) х (22 – (-18)) = 127,9 Вт.

Для расчета потерь через окна применяют ту же формулу, но термическое сопротивление их, как правило, указано в паспорте и рассчитывать его не нужно.

В теплоизоляции дома окна - «слабое звено». Через них уходит довольно большая доля тепла. Уменьшат потери многослойные стеклопакеты, теплоотражающие пленки, двойные рамы, но даже это не поможет избежать теплопотерь полностью

Если в доме окна с размерами 1,5 х 1,5 м ² энергосберегающие, ориентированы на Север, а термическое сопротивление равно 0,87 м2°С/Вт, то потери составят:

Qо = (2,25: 0,87) х (22 – (-18)) = 103,4 т.

Пример теплотехнического расчета №3

Выполним тепловой расчет деревянного бревенчатого здания с фасадом, возведенным из сосновых бревен слоем толщиной 0,22 м. Коэффициент для этого материала - К=0,15. В этой ситуации теплопотери составят:

R = 0,22: 0,15 = 1,47 м² х ⁰С/Вт.

Самая низкая температура пятидневки - -18⁰, для комфорта в доме задана температура 21⁰. Разница составит 39⁰. Если исходить из площади 120 м², получится результат:

Qс = 120 х 39: 1,47 = 3184 Вт.

Для сравнения определим потери кирпичного дома. Коэффициент для силикатного кирпича - 0,72.

R = 0,22: 0,72 = 0,306 м² х ⁰С/Вт.
Qс = 120 х 39: 0,306 = 15 294 Вт.

В одинаковых условиях деревянный дом более экономичный. Силикатный кирпич для возведения стен здесь не подходит вовсе.

Деревянное строение имеет высокую теплоемкость. Его ограждающие конструкции долго хранят комфортную температуру. Все же, даже бревенчатый дом нужно утеплять и лучше сделать это и изнутри, и снаружи

Пример теплорасчета №4

Дом будет построен в Московской области. Для расчета взята стена, созданная из пеноблоков. Как утеплитель применен . Отделка конструкции - штукатурка с двух сторон. Структура ее - известково-песчаная.

Пенополистирол имеет плотность 24 кг/мᶾ.

Относительные показатели влажности воздуха в комнате - 55% при усредненной температуре 20⁰. Толщина слоев:

  • штукатурка - 0,01 м;
  • пенобетон - 0,2 м;
  • пенополистирол - 0,065 м.

Задача - отыскать нужное сопротивление теплопередаче и фактическое. Необходимое Rтр определяют, подставив значения в выражение:

Rтр=a х ГСОП+b

где ГОСП - это градусо-сутки сезона отопления, а и b - коэффициенты, взятые из таблицы №3 Свода Правил 50.13330.2012. Поскольку здание жилое, a равно 0,00035, b = 1,4.

ГСОП высчитывают по формуле, взятой из того же СП:

ГОСП = (tв – tот) х zот.

В этой формуле tв = 20⁰, tот = -2,2⁰, zот - 205 - отопительный период в сутках. Следовательно:

ГСОП = (20 – (-2,2)) х 205 = 4551⁰ С х сут.;

Rтр = 0,00035 х 4551 + 1,4 = 2,99 м2 х С/Вт.

Используя таблицу №2 СП50.13330.2012, определяют коэффициенты теплопроводности для каждого пласта стены:

  • λб1 = 0,81 Вт/м ⁰С;
  • λб2 = 0,26 Вт/м ⁰С;
  • λб3 = 0,041 Вт/м ⁰С;
  • λб4 = 0,81 Вт/м ⁰С.

Полное условное сопротивление теплопередаче Rо, равно сумме сопротивлений всех слоев. Рассчитывают его по формуле:

Подставив значения получают: Rо усл. = 2,54 м2°С/Вт. Rф определяют путем умножения Rо на коэффициент r, равный 0.9:

Rф = 2,54 х 0,9 = 2,3 м2 х °С/Вт.

Результат обязывает изменить конструкцию ограждающего элемента, поскольку фактическое тепловое сопротивление меньше расчетного.

Существует множество компьютерных сервисов, ускоряющих и упрощающих расчеты.

Теплотехнические расчеты напрямую связаны с определением . Что это такое и как найти ее значение узнаете из рекомендуемой нами статьи.

Выводы и полезное видео по теме

Выполнение теплотехнического расчета при помощи онлайн-калькулятора:

Правильный теплотехнический расчет:

Грамотный теплотехнический расчет позволит оценить результативность утепления наружных элементов дома, определить мощность необходимого отопительного оборудования.

Как результат, можно сэкономить при покупке материалов и нагревательных приборов. Лучше заранее знать, справиться ли техника с нагревом и кондиционированием строения, чем покупать все наугад.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, размещайте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как теплотехнический расчет помог вам выбрать обогревательное оборудование нужной мощности или систему утепления. Не исключено, что ваша информация пригодится посетителям сайта.

Исходные данные

Место строительства – г. Омск

z ht = 221 суток

t ht = -8,4ºС.

t ext = -37ºС.

t int = + 20ºС;

влажность воздуха: = 55 %;

Условия эксплуатации ограждающих конструкций – Б. Коэффициент теплоотдачи внутренней поверхности ограждения а i nt = 8,7 Вт/м 2 °С.

a ext = 23 Вт/м 2 ·°С.

Необходимые данные о конструктивных слоях стены для теплотехнического расчёта сведены в таблицу.

1. Определение градусо-суток отопительного периода по формуле (2) СП 23-101-2004:

D d = (t int - t ht) z th = (20–(8,4))·221= 6276,40

2. Нормируемое значение сопротивления теплопередаче наружных стен по формуле (1)СП 23-101-2004:

R reg = a · D d + b =0,00035·6276,40+ 1,4 =3,6м 2 ·°С/Вт.

3. Приведенное сопротивление теплопередаче R 0 r наружных кирпичных стен с эффективным утеплителем жилых зданий рассчитывается по формуле

R 0 r = R 0 усл r,

где R 0 усл – сопротивление теплопередаче кирпичных стен, условно определяемое по формулам (9) и (11) без учета теплопроводных включений,м 2 ·°С/Вт;

R 0 r - приведенное сопротивление теплопередаче с учетом коэффициента теплотехнической однородности r , который для стен равен 0,74.

Расчёт ведётся из условия равенства

следовательно,

R 0 усл = 3,6/0,74 = 4,86м 2 ·°С /Вт

R 0 усл =R si +R k +R se

R k = R reg - (R si + R se)= 3,6- (1/8,7 + 1/23) = 3,45 м 2 ·°С /Вт

4. Термическое сопротивление наружной кирпичной стены слоистой конструкции может быть представлено как сумма термических сопротивлений отдельных слоев, т.е.

R к = R 1 + R 2 + R ут +R 4

5. Определяем термическое сопротивление утеплителя:

R ут = R к + (R 1 + R 2 + R 4) = 3,45– (0,037 + 0,79) = 2,62 м 2 ·°С/Вт.

6. Находим толщину утеплителя:

Ри
= · R ут = 0,032· 2,62= 0,08м.

Принимаем толщину утеплителя 100 мм.

Окончательная толщина стены будет равна (510+100) = 610 мм.

Производим проверку с учетом принятой толщины утеплителя:

R 0 r = r (R si +R 1 + R 2 + R ут + R 4 + R se) = 0,74 (1/8,7 + 0,037 + 0,79 + 0,10/0,032+ 1/23) = 4,1м 2 ·°С/Вт.

УсловиеR 0 r = 4,1> = 3,6м 2 ·°С/Вт выполняется.

Проверка выполнения санитарно-гигиенических требований



тепловой защиты здания

1. Проверяем выполнение условия :

t = (t int – t ext)/R 0 r a int = (20-(37))/4,1·8,7 = 1,60 ºС

Согласно табл. 5СП 23-101-2004 ∆t n = 4 °С, следовательно, условие ∆t = 1,60< ∆t n = 4 ºС выполняется.

2. Проверяем выполнение условия :

] = 20 – =

20 – 1,60 = 18,40ºС

3. Согласно приложению Сп 23-101–2004 для температуры внутреннего воздуха t int = 20 ºС и относительной влажности = 55 % температура точки росы t d = 10,7ºС, следовательно, условие τsi = 18,40>t d = выполняется.

Вывод . Ограждающая конструкция удовлетворяет нормативным требованиям тепловой защиты здания.

4.2 Теплотехнический расчет мансардногопокрытия.

Исходные данные

Определить толщину утеплителя чердачного перекрытия, состоящего из утеплителя δ = 200 мм, пароизоляции, проф. листа

Чердачное перекрытие:

Совмещённое покрытие:

Место строительства – г. Омск

Продолжительность отопительного периода z ht = 221 суток.

Средняя расчетная температура отопительного периода t ht = -8,4ºС.

Температура холодной пятидневки t ext = –37ºС.

Расчет произведен для пятиэтажного жилого дома:

температура внутреннего воздуха t int = + 20ºС;

влажность воздуха: = 55 %;

влажностный режим помещения – нормальный.

Условия эксплуатации ограждающих конструкций – Б.

Коэффициент теплоотдачи внутренней поверхности ограждения а i nt = 8,7 Вт/м 2 °С.

Коэффициент теплоотдачи наружной поверхности ограждения a ext = 12 Вт/м 2 ·°С.

Наименование материала Y 0 , кг / м³ δ , м λ , мR , м 2 ·°С/Вт

1. Определение градусо-суток отопительного периода по формуле (2)СП 23-101-2004:

D d = (t int - t ht) z th = (20 –8,4) · 221=6276,4ºСсут



2. Нормирование значение сопротивления теплопередаче чердачного перекрытия по формуле (1) СП 23-101-2004:

R reg = a · D d + b , где а и b – выбираем по таблице 4 СП 23-101-2004

R reg = a · D d + b = 0,00045 · 6276,4+ 1,9 = 4,72м² · ºС / Вт

3. Теплотехнический расчет ведется из условия равенства общего термического сопротивления R 0 нормируемому R reg , т.е.

4. Из формулы (8) СП 23-100-2004 определяем термическое сопротивление ограждающей конструкции R k (м² · ºС / Вт)

R k = R reg - (R si + R se)

R reg = 4,72м² · ºС / Вт

R si = 1 / α int = 1 / 8,7 = 0,115 м² · ºС / Вт

R se = 1 / α ext = 1 / 12 = 0,083 м² · ºС / Вт

R k = 4,72– (0,115 + 0,083) = 4,52м² · ºС / Вт

5. Термическое сопротивление ограждающей конструкции (чердачного перекрытия) может быть представлена как сумма термических сопротивлений отдельных слоев:

R к = R жб + R пи + R цс + R ут → R ут = R к + (R жб + R пи + R цс) = R к - (d/ λ) =4,52 – 0,29 = 4,23

6. Используем формулу (6) СП 23-101-2004, определим толщину утепляющего слоя:

d ут = R ут · λ ут = 4,23· 0,032= 0,14 м

7. Принимаем толщину утепляющего слоя 150мм.

8. Считаем общее термическое сопротивление R 0:

R 0 = 1 / 8,7 + 0,005 / 0,17+0,15/0,032 + 1 / 12 = 0,115 + 4,69+ 0,083 =4,89м² · ºС / Вт

R 0 ≥ R reg 4,89 ≥ 4,72 удовлетворяет требованию

Проверка выполнения условий

1. Проверяем выполнение условия ∆t 0 ≤ ∆t n

Величину ∆t 0 определяем по формуле (4) СНиП 23-02-2003:

∆t 0 = n ·(t int - t ext) / R 0 · a int где, n – коэффициент, учитывающий зависимость положения наружной поверхности к наружному воздуху по табл. 6

∆t 0 = 1(20+37) / 4,89 · 8,7 = 1,34ºС

Согласно табл. (5) СП 23-101-2004∆t n = 3 ºС, следовательно, условие ∆t 0 ≤ ∆t n выполняется.

2. Проверяем выполнение условия τ >t d

Значение τ рассчитываем по формуле (25) СП 23-101-2004

t si = t int – [n (t int t ext )]/(R o a int )

τ = 20- 1(20+26) / 4,89· 8,7 = 18,66 ºС

3. Согласно приложению Р СП 23-01-2004 для температуры внутреннего воздуха t int = +20 ºС и относительной влажности φ = 55% температура точки росы t d = 10,7 ºС, следовательно, условие τ >t d выполняется.

Вывод: чердачное перекрытие удовлетворяет нормативным требованиям.

Если вы собрались построить
небольшой кирпичный коттедж, то у Вас конечно же возникнут вопросы: «Какой
толщины должна быть стена?», «Нужен ли утеплитель?», «С какой стороны класть
утеплитель?» и т.д. и т.п.

В данной статье мы попробуем в
этом разобраться и ответить на все Ваши вопросы.

Теплотехнический расчет
ограждающей конструкции нужен, в первую очередь, для того чтобы узнать, какой
толщины должна быть ваша наружная стена.

Во-первых, нужно решить, сколько
этажей будет в вашем здании и в зависимости от этого производится расчет
ограждающих конструкций по несущей способности (не в этой статье).

По данному расчету мы определяем
количество кирпичей в кладке вашего здания.

Например, получилось 2 глиняного
кирпича без пустот, длина кирпича 250 мм,
толщина раствора 10 мм, итого получается 510 мм (плотность кирпича 0.67
в дальнейшем нам пригодится). Наружную поверхность Вы решили покрыть
облицовочной плиткой, толщина 1 см (при покупке обязательно узнать ее
плотность), а внутреннюю поверхность обыкновенной штукатуркой, толщина слоя 1.5
см, также не забудьте узнать ее плотность. В сумме 535мм.

Для того чтобы здание не
разрушилось этого конечно же хватить, но к сожалению в большинстве городов
России зимы холодные и следовательно такие стены будут промерзать. А чтобы не
стены промерзали, нужен еще слой утеплителя.

Рассчитывается толщина слоя утеплителя
следующим образом:

1. В интернете нужно скачать СНиП
II 3-79* —
«Строительная теплотехника» и СНиП 23-01-99 - «Строительная климатология».

2. Открываем СНиП строительная
климатология и находим свой город в таблице 1*, и смотрим значение на пересечении
столбца «Температура воздуха наиболее холодной пятидневки, °С, обеспечен-ностью
0.98» и строки с вашим городом. Для города Пензы например t н = -32 о С.

3. Расчетная температура внутреннего воздуха
берем

t в = 20 о С.

Коэффициент теплоотдачи для внутренних стен a в = 8,7Вт/м 2 ·˚С

Коэффициент теплоотдачи для наружных стен в зимних условиях a н = 23Вт/м 2 ·˚С

Нормативный температурный перепад между температурой внутреннего
воздуха и температурой внутренней поверхности ограждающих конструкцийΔ t н = 4 о С.

4. Далее
определяем требуемое сопротивление теплопередаче по формуле #G0 (1а) из строительной теплотехники
ГСОП = (t в — t от.пер.) z от.пер , ГСОП=(20+4,5)·207=507,15 (для города
Пензы).

По формуле (1) рассчитываем:

(где сигма это непосредственно толщина
материала, а лямбда плотность. Я взял в качестве утеплителя
пенополиуретановые
панели с плотностью 0.025)

Принимаем толщину утеплителяравной 0,054 м.

Отсюда толщина стены будет:

d = d 1 + d 2 + d 3 + d 4 =

0,01+0,51+0,054+0,015=0,589
м.

Сезон ремонта подошел. Голову сломала: как сделать хороший ремонт за меньшие деньги. Про кредит мыслей нет. Опора только на имеющиеся...

Вместо того чтобы откладывать генеральный ремонт из года в год, можно приготовиться к нему так, чтобы пережить его в меру...

Для начало нужно убрать всё что осталось от старой компании которая там работала. Ломаем искусственную перегородку. После этого сдираем все...

Понравилось? Лайкни нас на Facebook